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ABSTRACT Typhoid fever, caused by Salmonella enterica serovar Typhi, is a global
public health concern due to increasing antimicrobial resistance (AMR). Characteriza-
tion of S. Typhi genomes for AMR and the evolution of different lineages, especially
in countries where typhoid fever is endemic such as Bangladesh, will help public
health professionals to better design and implement appropriate preventive mea-
sures. We studied whole-genome sequences (WGS) of 536 S. Typhi isolates collected
in Bangladesh during 1999 to 2013 and compared those sequences with data from
a recent outbreak in Pakistan reported previously by E. J. Klemm, S. Shakoor, A. J.
Page, F. N. Qamar, et al. (mBio 9:e00105-18, 2018, https://doi.org/10.1128/mBio.00105
-18), and a laboratory surveillance in Nepal reported previously by C. D. Britto, Z. A.
Dyson, S. Duchene, M. J. Carter, et al. [PLoS Negl. Trop. Dis. 12(4):e0006408, 2018,
https://doi.org/10.1371/journal.pntd.0006408]. WGS had high sensitivity and specificity
for prediction of ampicillin, chloramphenicol, co-trimoxazole, and ceftriaxone AMR
phenotypes but needs further improvement for prediction of ciprofloxacin resistance.
We detected a new local lineage of genotype 4.3.1 (named lineage Bd) which recently
diverged into a sublineage (named Bdq) containing gnr genes associated with high-
level ciprofloxacin resistance. We found a ceftriaxone-resistant isolate with the blacry..1s
gene and a genotype distinct from the genotypes of extensively drug-resistant (XDR)
isolates from Pakistan. This result suggests a different source and geographical origin
of AMR. Genotype 4.3.1 was dominant in all three countries but formed country-specific
clusters in the maximum likelihood phylogenetic tree. Thus, multiple independent
genetic events leading to ciprofloxacin and ceftriaxone resistance took place in these
neighboring regions of Pakistan, Nepal, and Bangladesh. These independent muta-
tional events may enhance the risk of global spread of these highly resistant clones. A
short-term global intervention plan is urgently needed.

IMPORTANCE Typhoid fever, caused by Salmonella enterica serovar Typhi, is respon-
sible for an estimated burden of approximately 17 million new episodes per year
worldwide. Adequate and timely antimicrobial treatment invariably cures typhoid fe-
ver. The increasing antimicrobial resistance (AMR) of S. Typhi severely limits the
treatment options. We studied whole-genome sequences (WGS) of 536 S. Typhi iso-
lates collected in Bangladesh between 1999 and 2013 and compared those se-
quences with data from a recent outbreak in Pakistan and a laboratory surveillance
in Nepal. The analysis suggests that multiple ancestral origins of resistance against
ciprofloxacin and ceftriaxone are present in three countries. Such independent ge-
netic events and subsequent dissemination could enhance the risk of a rapid global
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spread of these highly resistant clones. Given the current treatment challenges, vac-
cination seems to be the most appropriate short-term intervention to reduce the
disease burden of typhoid fever at a time of increasing AMR.

KEYWORDS Bangladesh, Salmonella Typhi, antibiotic resistance, genomics

yphoid fever is a life-threatening infectious disease caused by Salmonella enterica

serovar Typhi. S. Typhi colonizes only humans, is transmitted through the fecal-oral
route, and is endemic in tropical countries, especially in Africa and South and Southeast
Asia. Worldwide, approximately 17 million people are infected every year by this
pathogen (1-4). Though the mortality rate remains low (<1%), 1 in 20 to 25 cases
experiences residual disability (5).

Adequate and timely antimicrobial treatment invariably cures typhoid fever. How-
ever, the increasing antimicrobial resistance (AMR) of S. Typhi limits the treatment
options. In spite of suggested regional decreases in the levels of antibiotic resistance
(6-8), the first cases of S. Typhi isolates showing multidrug resistance (MDR) (defined as
co-occurring resistance to ampicillin [amp], chloramphenicol [chl], and co-trimoxazole
[sxt]) were reported in the early 1970s (9, 10). Ciprofloxacin (cip) resistance first
emerged in the early 1990s. At present, over 90% of clinical isolates from regions of
endemicity show reduced susceptibility to ciprofloxacin (6, 7, 11). These events shifted
the first-line and empirical treatments to other classes of antimicrobial agents, such as
ceftriaxone (cro) and azithromycin. Alarmingly, reports of resistance against these
agents have now been published (6, 12-18). Moreover, a recent report from Pakistan
described the first large-scale outbreak of an S. Typhi clone that is extensively drug
resistant (XDR; defined as MDR plus resistance to ciprofloxacin and ceftriaxone) (12).

Whole-genome sequence (WGS)-based approaches using next-generation sequenc-
ing (NGS) have become effective tools for the study of genetic diversity and prediction
of resistance phenotypes (12, 19-25). Several studies have correlated WGS data with
various resistance phenotypes in S. Typhi (12, 20, 25, 26). However, most of these
studies involved small numbers of isolates from multiple countries, isolates from single
outbreaks, or clusters of travel-related typhoid cases, which do not accurately represent
the situation in countries where typhoid fever is endemic over longer periods of time
(12, 20, 25-29). These shortcomings limit our overall understanding fo the dynamics of
typhoid fever in regions of endemicity, especially in South Asia, where the disease
burden is high.

We generated a WGS data set of 536 S. Typhi strains, which were mostly isolated
from the blood of pediatric patients in Bangladesh over a period of 15 years (1999 to
2013). In this study, we explored the phenotypic and genotypic diversity of these
isolates using whole-genome single nucleotide polymorphism (wgSNP) analysis, clas-
sical multilocus sequence typing (MLST), and core genome MLST (cgMLST). We also
examined the phylogenetic relationships between these isolates and compared the
results with two published data sets from two neighboring countries, representing a
hospital-based surveillance study in Nepal and an outbreak during 2016 to 2017 in
Pakistan (12, 29). Additionally, we investigated the utility of NGS data for the prediction
of phenotypic resistance to multiple antibiotics. We focused on the genes involved in
MDR and mutations in the DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and
parE) enzymes that lead to ciprofloxacin resistance.

RESULTS

Genotypic diversity of S. Typhi in Bangladesh. Among the 539 strains presump-
tively identified as S. Typhi, 536 (99%) were confirmed to be S. Typhi by WGS-based
serotyping and were analyzed further. A total of 61% (329/536) of them were from
hospitalized patients. Genotype 4.3.1 was dominant (65%; 350/536), followed by ge-
notype 3.3 (13%; 69/536), genotype 3.2.2 (11%; 61/536), and 12 other genotypes
(Table 1). Classical MLST analysis revealed the presence of only three different sequence
types (ST) among our isolates, namely, ST1 (n = 351), ST2 (n = 166), and ST2209 (n =
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TABLE 1 Genotyping and haplotyping results for the 536 S. Typhi isolates from
Bangladesh based on WGS

No. of
Genotype isolates % of total Haplotype
4.3.1 350 65.30 H58
33 69 12.87 H1
3.2.2 61 11.38 H1
2 18 3.36 NT
233 18 3.36 NT
2.1.7 4 0.75 H8
2.0.1 3 0.56 NT
2.2 3 0.56 NT/H39
1.2.1 2 0.37 NA“
2.5 2 0.37 H55
3 2 0.37 H13
3.0.1 2 0.37 H13
3.0.2 1 0.19 H13
4.1 1 0.19 H52/15/10/67
Total 536 100

aNA, not available.

18) (Fig. 1a), all of which had similar ratios of hospitalized and outpatient cases (~60%
versus ~40%). Overall, 99% of the ST1 strains had the 4.3.1 genotype (349/351), while
all of the ST2209 strains had genotype 2.3.3 (18/18; 100%). Other genotypes were
within ST2 (Fig. 1a). One isolate was nontypeable (NT) by MLST analysis. With respect
to the haplotyping scheme, haplotype 58 (H58) was dominant (65%; 350/536), followed
by H1 (130/536; 24%) (Table 1).

Phylogenetic relationships and new lineages. Genotypes 3.2.2 and 3.3 clustered
together in the same classical MLST type (ST2) but formed two distinct subclades in the
unweighted pair group method using average linkages (UPGMA) tree based on cgMLST
analyses of 3,002 core loci (Fig. 1a and b). Like genotype 2.3.3, genotype 4.3.1 also
generated its own subclade in the tree, with the notable presence of multiple sub-
groups (Fig. 1b). The same UPGMA tree presented a distinct population structure and
a similar genotypic differentiation as observed in the maximum likelihood tree (MLT),
which was based on 2,328 SNPs from our WGS data compared to the S. Typhi CT18
reference genome (Fig. 1c) (30).

Genotype 1.2.1 mapped closest to the root of the MLT; genotype 4.3.1 was the most
remote (Fig. 1c). As the dominant genotype, 4.3.1 formed a large subclade, with
genotype 4.1 in its primary clade. Another primary clade divided into two major
subclades, genotypes 3.3 and 3.2.2, which comprised the second and third most
prevalent genotypes in Bangladesh. Two small subclades of genotype 2.3.3 and geno-
type 2.0 were also present in the MLT, rooting with genotype 2.2 and 2.1.7, respectively.

The comparative MLT created using our data and the strains from neighboring
countries showed country-specific clusters inside the dominant 4.3.1 genotype and also
in genotypes 3.3 and 3.2.2 (Fig. 2 and 3). This suggests different points of origin for the
various lineages of S. Typhi in each country. All XDR Pakistani isolates extended into a
single branch of the MLT, showing H58 lineage la and a minimally divergent pattern
(Fig. 3; see also Fig. S1 in the supplemental material), whereas the Nepali strains were
dominant in lineage II. The isolates from Bangladesh included only four isolates from
lineage Il but showed two distinct clusters inside genotype 4.3.1 (H58): lineage la (n =
223) and a previously nondescribed lineage (n = 108; Fig. 3). The latter lineage did not
match the SNP definition of H58 lineage | or lineage Il, suggesting a previously
undetected H58 lineage (genotype 4.3.1). On the basis of the MLT, this nondescribed
lineage could have had the same point of origin as lineage | but then clearly followed
a different pattern of divergence and formed its own subclade inside genotype 4.3.1
(Fig. 3). This new H58 lineage can be distinguished by the SNPs at nucleotide position
561056 (C—A) and 2849843 (A—C) of the CT18 reference genome (this previously
undescribed lineage is referred to as “lineage Bd” in the remainder of the article).
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FIG 1 Genomic diversity and phylogenetic relationships among S. Typhi isolates from Bangladesh. (a and b) UPGMA trees constructed on the basis of (a)
Classical MLST (7-locus-based) results in comparison with the genotypes and (b) core-genome MLST (cgMLST) results. (c) Maximum likelihood tree (MLT)
constructed on the basis of results of whole-genome SNP (wgSNP) analyses. All phylogenetic trees are colored according to genotypes.

Resistance phenotypes and genotypes. On the basis of analyses performed with
five different antibiotics—ampicillin (amp), chloramphenicol (chl), co-trimoxazole (sxt),
ciprofloxacin (cip), and ceftriaxone (cro)—the 536 S. Typhi isolates from Bangladesh
were found to harbor 12 different phenotypic resistance profiles (phenotypes; Table 2).
Isolates with the “MDR, cip-R” profile (n = 202) were most prevalent in our library,
followed by “cip-R only” (n = 169) and “Susceptible to all” (n = 62). A comparison of
MDR and ciprofloxacin-resistant isolates with different genotypes is presented in
Table 3. The single ceftriaxone-resistant (cro-R) strain (MIC > 32 ug/ml) (susceptible to
sxt, chl, and cip) in our library, isolated in 2000, displayed genotype 3.3 (haplotype H1)
and contained the blacry .15 gene (ceftriaxone resistance). The other resistance genes
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FIG 2 Comparison of Bangladesh isolates with Pakistan and Nepal isolates in a wgSNP-derived MLT. No singleton was considered in the consensus SNP data.
The tree is colored by genotype. Different data points, including country, presence of different gyrA-83 mutations, MDR, and cip resistance and cro resistance
phenotypes are indicated (by colors) in different circles around the tree. nMDR, no multidrug resistance.

detected are listed in Table 4, including bla gp.15 (@mpicillin resistance); catA1 (chlor-
amphenicol resistance); dfrA7, sull, and sul2 (co-trimoxazole resistance); and gnrS1
(ciprofloxacin resistance).

Comparison of phenotypic and WGS-derived resistance profiles. On the basis of
the resistance genes identified for the five antimicrobial agents, a WGS resistance
(WGS-res) profile was assigned and compared with the phenotypic profile of each
isolate to evaluate the ability of the WGS approach to predict the resistance phenotype
(Table 5). For all antimicrobial agents except ciprofloxacin, the two profiles corre-
sponded at a level of 99% for the resistant isolates. In contrast, some susceptible
isolates (n = 33) harbored resistance genes, which reduced the specificity of the
method (=91%). Three of them had truncated genes (considered inactive genes;
Table 5), but the other 30 isolates had the complete coding sequences without any
phenotypic resistance. This might suggest impairments (e.g., transcriptomic, transla-
tional, protein modification, etc.) in downstream steps of the resistance pathway or the
presence of counteracting genes.
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FIG 3 Comparison of genotype 4.3.1 (H58) isolates from Bangladesh, Pakistan, and Nepal in a wgSNP-derived MLT. No singleton was considered in the
consensus SNP data. The tree is colored by country. Different data points, including lineage, sublineage (details), presence of different gyrA-83 mutations, MDR,
cip resistance, presence of gnr genes, and cro resistance phenotypes are indicated (by colors) in different circles around the tree.

On the other hand, for isolates with resistant phenotypes but susceptible WGS
res-profiles, we screened for mutations in genes with efflux pump or membrane
permeability functions (see Table S1 in the supplemental material). However, no
relevant patterns were detected for AMR.

Ciprofloxacin resistance, background mutations, and genotypes. The resistance
gene analysis identified the gnrS7 gene in 55 isolates (Table 4) and detected a number
of different mutations (n = 24) in the gyrA and gyrB genes encoding DNA gyrase and
in the topoisomerase IV enzyme parC and parE genes (Table 6, columns 1 to 3). The
most prevalent mutation was gyrA D538N (n = 352), followed by gyrA S83F (n = 299),
gyrA S83Y (n = 125), and parE A364V (n = 69). On the basis of mutations in gyrA/B and
parC/E genes, 34 cip-mutation profiles were generated and compared with the cipro-
floxacin MIC of each isolate (Table 6, columns 4 and 5) (Fig. 4 and 5). All of the profiles,
apart from gyrA D538N and parE A364V, were associated with resistance (MIC >
0.06 ng/ml). Two different profiles with triple mutations (gyrApg,g 9yrAsgsr ParCegax for
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TABLE 2 Resistance phenotypes in our library of 536 S. Typhi isolates?

Phenotype No. of isolates % of total
MDR, cip-R 202 37.69
MDR 4 0.75
amp-R, sxt-R, cip-R 1 0.19
amp-R, chl-R, cip-R 2 0.37
amp-R, cip-R 53 9.89
amp-R, cro-R 1 0.19
sxt-R, chl-R, cip-R 25 4.66
sxt-R, chl-R 1 0.19
chl-R, cip-R 15 2.80
chl-R only 1 0.19
cip-R only 169 31.53
Susceptible to all 62 11.57
Total 536 100

aFive different antibiotics were considered: ampicillin (amp), co-trimoxazole (sxt), chloramphenicol (chl),
ciprofloxacin (cip), and ceftriaxone (cro). MDR (multidrug resistance) refers to co-occurring resistance to
amp, sxt, and chl. “S” and “R” refer to susceptible and resistant phenotypes, respectively (interpretations
according to EUCAST-2018).

eight isolates and gyrApgsn gYrAcgse pParCsgy for one isolate) had median MICs of
=8.0 ug/ml (Fig. 5) (Table 6, columns 4 and 5). Profiles with gnr genes also had MICs of
=1.0 ug/ml (Fig. 4 and 5). No mutations were present in 18 isolates, but 3 of them
showed resistance to ciprofloxacin (MIC of 0.25 to 0.5 ug/ml; Fig. 4).

Mutations in codon 83 of gyrA (S83F and S83Y) were the most prevalent among our
ciprofloxacin-resistant isolates (411/467; 88%) (Table 6, columns 1 to 3). The S83Y
mutation (122/411) was closely associated with genotype 4.3.1 in Bangladesh (123/125;
98%) and was present in 96% of our H58 lineage Bd isolates (104/108; Fig. 3). In
contrast, 89% of our lineage la isolates had the S83F mutation (198/223) and exhibited
lower mean (0.74 versus 1.71 ug/ml) and median (0.25 versus 0.5 ug/ml) ciprofloxacin
MIC values than the lineage Bd isolates. The latter lineage also displayed more
divergence than lineage | in Bangladesh (Fig. 3; mean pairwise distances, 12.8 versus
11.2). The root of lineage Bd contained isolates detected at earlier time points (1999 to
2004) and formed a noticeable subclade at the tip composed of isolates (n = 55)
collected from 2006 onward (Fig. 3; see also Fig. S2 and S3). In addition, this small
subclade had the universal presence of the gnr gene and MIC values of =1.0 ug/ml
(Fig. 3). This small, gnr-specific subclade within lineage Bd can be defined by SNPs at

TABLE 3 Comparison between multidrug resistance (MDR) and ciprofloxacin resistance
(cip-R) with genotypes among Bangladesh isolates

No. of isolates

MDR cip-R
Genotype Yes No Yes No Total
1.2.1 0 2 0 2 2
2 1 17 6 12 18
2.0.1 0 3 3 0 3
2.1.7 0 4 2 2 4
2.2 0 3 2 1 3
233 0 18 8 10 18
2.5 0 2 0 2 2
3 0 2 1 1 2
3.0.1 0 2 1 1 2
3.0.2 0 1 0 1 1
322 0 61 52 9 61
33 0 69 52 17 69
4.1 0 1 1 0 1
431 205 145 339 1 350
Total 206 330 467 69 536
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TABLE 4 List of resistance genes detected in our isolates?

mBi

No. of % of
Resistance gene Antibiotic class isolates total Phenotype Matched NCBI accession no.
blarem-1s Beta-lactam 271 50.28 amp-R JF910132
blacrym-1s Beta-lactam 1 0.19 cro-R DQ302097
catAl Phenicol 256 47.50 chl-R V00622
dfrA7 Trimethoprim 257 47.68 tmp-R JF806498
qnrS1 Quinolone 55 10.2 cip-R AB187515
strA Aminoglycoside 210 38.96 str-R AF321551
strB Aminoglycoside 210 38.96 str-R M96392
sull Sulfonamide 257 47.68 sul-R CP002151
sul2 Sulfonamide 265 49.17 sul-R HQ840942, FJ197818, GQ421466
tet(A) Tetracycline 51 9.46 tet-R AJ517790
tet(B) Tetracycline 46 8.53 tet-R AF326777

aThe table columns list each gene name, the antimicrobial class that it works against, the number of isolates that contained the gene, the percentage of isolates that
contained the gene, the resulting resistance phenotype, and the NCBI gene accession number.

nucleotide positions 1253109 (T—G), 2385340 (A—G), 2676540 (A—T), and 2688285
(C—T) of the CT18 reference genome (and is referred to as sublineage Bdq in the rest
of this article). Comparison with other lineages in our cohort of isolates from Bangla-
desh revealed that sublineage Bdq had a very high median ciprofloxacin MIC (4 ug/ml;

TABLE 5 Evaluation of the ability of WGS-res profiles to predict S. Typhi resistance phenotypes of our isolates?

Antimicrobial

No. of isolates with
indicated phenotype

resistance
category Presence of gene(s) and WGS-res profile Resistant Susceptible Sensitivity (%) Specificity (%)<
Ampicillin resistance Total 263 273
blaremas 262 7
Truncated bla gy 0 2
No blargm.1s 1 264
WGS-res profile: resistant 262 7 99.6 97.4
WGS-res profile: susceptible 1 266
Co-trimoxazole resistanced Total 233 303
dfrA7 + sull + sul2 205e1 4fi
dfrA7 + sull only 26 229
sul2 only 1ed 55hi
None of three 1 222
WGS-res profile: resistant 231 26 99.1 914
WGS-res profile: susceptible 2 277
Chloramphenicol resistance Total 250 286
catA1 248 7
Truncated catAT1 0 v
No catA1 2 278
WGS-res profile: resistant 248 7 99.2 97.6
WGS-res profile: susceptible 2 279
Ceftriaxone resistance Total 1 535
blacry s 1 0
No blacry s 0 535
WGS-res profile: resistant 1 0 100.0 NA
WGS-res profile: susceptible 0 535

aFour antimicrobials were considered (ampicillin, co-trimoxazole, chloramphenicol, and ceftriaxone); resistance to these agents is caused mainly by acquisition of

resistance genes.

bSensitivity data represent proportions of isolates identified as phenotypically resistant by the WGS-res profile.
Specificity data represent proportions of isolates identified as phenotypically susceptible by the WGS-res profile.
dFor co-trimoxazole (sxt), we considered the presence of dfrA7, plus sull and/or sul2 genes to exert the resistance (R) phenotype.

eA total of 206 detected sul2 genes matched three different GenBank IDs: FJ197818 (n = 74), GQ421466 (n = 1), and HQ840942 (n = 131).
fOf the four sul2 genes, two matched FJ197818 and two HQ840942. One sull gene had unreliable bases (N) in its sequence; that result was considered a sequencing
error, and the complete sequence was used in calculations.
90ne sull gene had unreliable bases (N) in its sequence; that result was considered a sequencing error, and the complete sequence was used in calculations.
hA total of 54 genes matched GQ421466 and one HQ840942.

Only sul2 genes that matched HQ840942 had complete sequences. Genes that matched FJ197818 and GQ421466 were either truncated or mutated.

JAIl catAT gene sequence had one silent mutation in amino acid 195 (lysine) (CTG—TTG).
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TABLE 6 Mutations detected in DNA gyrase (gyrA and gyrB genes) and topoisomerase IV (parC and parE genes) individually, and
combined mutation profiles based on them

No. of No. of
Gene Mutation mutations Mutation combination (profile) mutation profiles
gyrA D538N 352 gyrA-D538N, gyrA-S83F 179
S83F 299 gyrA-D538N, gyrA-S83Y 120
583Y 125 gyrA-S83F 66
D87N 30 gyrA-S83F, parE-A364V 26
N529S 17 parE-A364V 18
D87G 11 gyrA-N529S, gyrB-S464F 17
D87Y 4 gyrA-D87N, parE-A364V 15
AT19E 1 gyrA-D538N, gyrA-D87N 12
D87A 1 gyrA-D538N, gyrA-S83F, parE-T447A 9
gyrB S464F 21 gyrA-D538N 8
S464Y 10 gyrA-D538N, gyrA-D87G, gyrA-S83F, parC-E84K 8
parC E84K 10 gyrB-5S464Y 8
S80R 2 gyrB-S464F 3
D69A 2 gyrA-D538N, gyrA-D87Y 2
T620M 1 gyrB-5464Y, parE-A364V 2
E84G 1 gyrA-D87Y 2
S80I 1 gyrA-S83Y, parC-D69A, parE-A364V 2
parE A364V 69 gyrA-D538N, gyrA-S83F, parE-L416F 2
T447A 9 gyrA-D87N, parE-A364V, parE-S339L 2
L416F 2 gyrA-D538N, gyrA-S83Y, parE-A365S 2
S339L 2 gyrA-D538N, gyrA-S83F, parC-E84K 2
A365S 2 Other combination pattern (one isolate for each) 13
L502F 1 No mutation 18
E460K 1
Total 536

Fig. S4) and low divergence (mean pairwise distance, 8.4). Many isolates from Pakistan
in lineage la also contained gnr genes (Fig. 3) but showed no specific divergence
pattern.

In total, 11 ciprofloxacin-resistant isolates (11/467; 2%) did not have any other
mutation in DNA gyrase and topoisomerase IV genes, leading to an estimated sensi-
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FIG 4 Mutation profiles detected in genes associated with ciprofloxacin resistance in our isolates and correlation with ciprofloxacin MIC. The horizontal
red line indicates the threshold MIC level (0.06 wg/ml) of resistance (according to EUCAST v8.0).
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FIG 5 Comparison of mutation profiles and presence of gnr genes with the level of ciprofloxacin resistance (cip MIC) and genotypes in a wgSNP-MLT. No
singleton was considered in the consensus SNP data. The tree is colored by genotype. Circles around the tree are numbered and colored based on the data

points shown.

tivity of 98% for the WGS method in correctly predicting ciprofloxacin resistance. In
contrast, 36 of 69 ciprofloxacin-susceptible isolates had at least one mutation (not
linked to a specific genotype) in one of these four genes (specificity = 52%).

Comparison with neighboring countries. All genotype 4.3.1 isolates from Bangla-
desh (this study), Nepal (surveillance in Kathmandu), and Pakistan (outbreak in Sindh)
had the same gyrA D538N mutation (Fig. S5). Likewise, the parE A364V mutation was
present in all genotype 3.3 isolates from Bangladesh (70/70) and Nepal (17/19) and in
genotype 3.3.1 (3/3) isolates from Nepal. Genotype 2.0 isolates from Bangladesh also
had the gyrA N529S mutation present (94%; 17/18). However, none of these mutations
seemed to have any association with AMR (Fig. 4).

Comparisons performed with the blacry.m.1s gene sequence of our ceftriaxone-
resistant isolate revealed 92% coverage and 99% identity with the XDR isolate
(GenBank accession no. LT906492.1) from the Pakistani outbreak (Table 7). In contrast,
the blacry.m.1s 9ene from Bangladesh shared complete homology with the Klebsiella
pneumoniae blacry .15 gene (FJ815436.1). A detailed comparison of our sequence data
with the sequences of the isolates from Pakistan and Nepal is presented in Table 7.

DISCUSSION

S. Typhi multilocus sequence types and other genotypes in Bangladesh. Geno-
typing and the phylogenetic inferences agreed with the genotyping framework inter-
pretation (27) and showed genotype 4.3.1 (haplotype 58, H58) to be dominant among
the isolates from Bangladesh (Table 1). This was no surprise, as this genotype possibly
emerged from South Asia in the early 1990s and now dominates in regions of typhoid
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TABLE 7 Comparison of the isolates from Bangladesh with isolates described in other studies from two neighboring countries®

Criterion

Result(s)

Bangladesh (present study)

Nepal (29)

Pakistan (12)

Sample source

Timeline

No. of S. Typhi samples
analyzed

Age limit

No. of MDR or XDR isolates

No. of isolates with
ciprofloxacin resistance

No. of isolates with
ceftriaxone resistance
(cro-R)

Genotype of cro-R isolate(s)

Phenotype of cro-R isolate(s)

blacry.mis identity and
coverage

No. of isolates with indicated
dominant genotypes

No. of isolates with indicated
dominant H58 lineage(s)
Local lineage(s) detected?

AMR details of local lineage

Time of emergence for local

Hospital surveillance
(hospitalized and outpatient
services)

1999-2013

536

<18 yrs for hospitalized cases;
no age limit for
outpatient cases
MDR, 206 (38%); XDR, none
467 (87%)

1 (0.2%) (caused by bldcry.mis)

33

amp-R, cro-R

92% coverage and 99% identity with
gene sequence from Pakistan

4.3.1 (H58), 350 (65%); 3.3 (H1),

69 (13%); 3.2.2 (H1),
61 (11%)

la, 223 (63% of H58); Bd, 108
(31% of H58)

Yes; lineage Bd (108 isolates [31%
of H58]) and sublineage Bdq (55
isolates [16% of H58])

All sublineage Bdq contain gnr
genes; 88% have cip-MIC =1 ug/ml
(median, 4 ug/ml)

See Fig. S3

Laboratory surveillance of
typhoidal Salmonella

2008-2016
198

<14yrs

MDR, 6 (0.03%); XDR, none
171 (86%)

None

NA
NA
NA

4.3.1 (H58), 154 (78%); 3.3.0,
19 (10%)

I, 21 (10% of H58); Il 133
(67% of H58)

Yes; local lineage Il (no. of
isolates not given)

(@) Intermediate resistance
to CIP; (b) no MDR; (c)
contains gyrA-S83F
mutations

Possibly after 2008

lineages

Outbreak

November 2016-March 2017
100

None

MDR, 89 (89%); XDR, 87 (87%)
96 (96%)

88 (88%) (caused by blacry.mis)
(another 12 cro-S isolates
were selected for
comparison)

4.3.1 (lineage la)

XDR

NA

4.3.1 (H58), 99 (99%)

la, 92 (92% of H58)

No; a clone of lineage la with
possible local origin

Not a lineage but a clone of
lineage la; predominantly

XDR

November 2016-present

9MDR, multidrug resistance, defined as co-occurring resistance to ampicillin, chloramphenicol, and co-trimoxazole; XDR, extensive drug resistance, defined as MDR plus

resistance to ciprofloxacin and ceftriaxone.

endemicity in the world (26, 31). The same genotype was also dominant among the
isolates from Nepal and Pakistan (Table 7) (12, 29). On the other hand, classical MLST
revealed only three sequence types (ST), with dominance of ST1 and ST2, which accords
with global MLST report (32). There are 46 complete MLST types available for S. Typhi
(33). Interestingly, the third most common MLST type in our data, ST2209, had a
complete match with genotype 2.3.3 (100%; 18/18) (Fig. 1a). Isolates of this genotype
from 2013 (n = 8) had the same mutation (gyrB S464Y). Five of 8 had a cip-resistant
phenotype, which could indicate the beginning of new clonal dissemination (see Fig. S2
in the supplemental material).

Moreover, 99% (349/351) of all ST1 isolates from Bangladesh belonged to genotype
4.3.1 (Fig. 1a). This association was previously described in a small study involving 32
isolates (34). A phylogeographical report of S. Typhi included an estimate that diver-
gence for genotype 4.3.1 commenced in the very late 1980s (26). However, the
presence of ST1 could be detected before the 1980s (33, 35), as is likely the case for H58.

Presence of genotype-specific mutations. Isolates with genotype 4.3.1 from all
three countries shared a common but as-yet-unreported mutation, gyrA D538N (nu-
cleotide position 2332398 of the CT18 genome; Fig. S5). This mutation is not linked to
ciprofloxacin resistance (Fig. 4 and 5) but could be crucial to the structure of the DNA
gyrase enzyme, considering the associated change in the isoelectronic point (pl; D—N:
2.77 — 5.41) of the amino acid due to this mutation (36). Similar associations were also
observed between genotype 2.0 and gyrA N529S (hydrophobicity, 3.47 — 1.83), and
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genotype 3.3 and parE A364V (hydrophobicity, 0.0 — —0.78; Fig. S5) (37). These
mutations could have potential as markers to trace genotypes, especially the more
prevalent genotypes such as 4.3.1 and 3.3.

New H58 lineages with high-level ciprofloxacin resistance. According to the
published scheme that defines the different lineages of genotype 4.3.1 (H58) (26, 38),
lineage la was dominant among the isolates from the recent Pakistan XDR outbreak,
while most isolates from the Nepal surveillance belong to lineage Il (Table 7). An
undefined cluster within lineage Il was also noticed among the Nepali isolates (Fig. 3),
as has been described previously (12, 29). Among our isolates from Bangladesh, we
found a new lineage of genotype 4.3.1 (H58), Bd (n = 108), which represented the
second most dominant lineage after la (n = 223). This new lineage has decreased
susceptibility to ciprofloxacin compared to lineage la (mean MIC, 1.71 versus 0.74 ug/
ml). Ciprofloxacin MICs of >0.06 ug/ml are classified as resistant following the EUCAST
guidelines. However, as the resistance breakpoint specified by the Clinical and Labo-
ratory Standards Institute (CLSI) is 1 wg/ml, some strains could be classified as suscep-
tible in countries that use the CLSI guidelines (12, 17, 29). Moreover, lineage Bd is
probably of local origin, as it was absent in both neighboring countries (Fig. 3) and does
not match the published SNP definition of lineage | or Il (38). This local variant also had
a higher pairwise distance in the SNP matrix (mean, 12.8 versus 11.2) than lineage la,
suggesting a different pattern of divergence.

Remarkably, a sublineage of lineage Bd (Bdqg; n = 55) showed increased resistance
compared to other isolates from the same lineage, with median ciprofloxacin MICs of
4.0 ug/ml (mean MIC, 3.4 versus 0.4 ug/ml; Fig. S4). Sublineage Bdq predominantly
carried gnr genes, in addition to gyrA mutations (Fig. 3 and 5), and showed more
clonality than other lineages (mean pairwise distance, 8.4 versus 11.2 for la). Moreover,
sublineage Bdq emerged recently, as all isolates were from 2006 onward, but became
more prevalent after 2007 (Fig. S3). Therefore, antimicrobial treatment with fluoro-
quinolones of infections caused by sublineage Bdg may lead to failure.

A similar highly resistant lineage with triple mutations (gyrAsgsr 9¥rApssc ParCegac)
but with no gnr genes was previously reported to cause failure of treatment with
gatifloxacin in Nepal (28, 29). Our MLT also showed a small subclade (n = 8) inside
lineage la for Bangladesh, with a triple mutation (gyrAcgse 9yrApssc ParCegax) and
median ciprofloxacin MICs of 8.0 ug/ml (Fig. 4 and 5).

Notably, the number of lineage Il isolates (n = 4) in Bangladesh was extremely low
(Fig. 3), despite the dominance of this lineage in Nepal and India (26, 27, 29). The
surveillance data from Nepal, which mostly describes the isolates from Kathmandu
valley, showed a shifting pattern of H58 lineages (from lineage | to lineage Il) over the
years (29). Such a changing pattern is not observed in Bangladesh, probably because
of relatively high prevalence and dominance of local lineages, such as the previously
unreported lineage Bd. The Nepal surveillance also reported association of MDR with
lineage | and of cip resistance with lineage Il (29). However, no such association has
been found for lineage | or lineage Bd in Bangladesh (see Data Set S1 in the supple-
mental material).

wgSNP analysis suggests regional clonality of S. Typhi in Bangladesh. The
wgSNP analyses of our isolates generated 2,328 SNPs, revealing that the S. Typhi
population in Bangladesh is highly clonal. However, addition of the isolates from Nepal
(n = 198) and Pakistan (n = 100) increased the number of SNPs to 3,251 but decreased
the number to 627 for genotype 4.3.1 isolates only (n = 603). As the filtering criteria
remain the same, the number of SNPs for all Bangladesh isolates is relatively low
compared to the global or multicountry context (25-27) but is similar to country-
specific data. For example, 1,850 SNPs were detected in isolates from Thailand (n = 44)
and 2,187 SNPs in isolates from Nepal (n = 198) (29, 39). The wgSNP-MLT data showed
distinct differentiation of all genotypes, much like the data from the cgMLST-UPGMA
tree, except the latter lacked clear inferences for different H58 lineages (Fig. 1b and ¢
and Fig. S6). Genotype 1.2.1 mapped close to the root of the MLT, suggesting that this
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genotype is one of the oldest circulating types. Likewise, being the most distantly
related, genotype 4.3.1 could be one of the more recent genotypes circulating in
Bangladesh (Fig. 1c) and neighboring countries (Fig. 2).

WGS predicts AMR phenotypes with high sensitivity. The WGS-based resistance
profiles showed >99% sensitivity and >91% specificity in describing the phenotypes
(for amp, sxt, chl, and cro) of AMR isolates (Table 5). Remarkably, the dfrA7 genes
(involved in trimethoprim resistance) were always detected in the presence of the sull
gene (sulfonamide resistance) and never alone. Table 5). Similarly, sull was never
detected in the absence of dfrA7. Two isolates had discordant results, as we did not
detect the concordant resistance genes in WGS analyses (Table 5). Repeating the
antimicrobial susceptibility tests (ASTs) reconfirmed the resistant phenotype. Other
resistance mechanisms, e.g., efflux pumps or membrane permeability changes, may be
involved (40).

Ciprofloxacin resistance in 11 isolates with no mutation in DNA gyrase or topoisom-
erase IV genes (and no gnr genes) can suggest the presence of other mechanisms.
Indeed, MDR bacteria can increase the expression of efflux pump genes, including
acrAB, acrEF and tolC (through overexpression of ramA or repression of acrR genes). This
enables the bacteria to expel fluoroquinolone molecules, resulting in ciprofloxacin
resistance (40-43), as well as ampicillin or chloramphenicol resistance, even in the
absence of bla or catA genes (44-46). On the other hand, isolates carrying a bla gene
without the resistance phenotype could be the result of mutations in the promoter
regions of outer membrane protein genes, such as the ompC gene, which facilitates
penetration of beta-lactams through the outer membrane (47, 48). This could be the
scenario for several susceptible isolates (n = 30) in our library that have the full-length
resistance gene. However, transcriptomic or proteomic approaches may be required to
further explore these possibilities.

Different genotypic backgrounds of ceftriaxone resistance in Bangladesh and
Pakistan. The ceftriaxone-resistant (cro-R) strain from our library was isolated in 2000.
The first report of a cro-R strain was published in 1999 (16). Interestingly, this isolate
harbored the same extended-spectrum-beta-lactamase (ESBL) gene, blacry_m.15 (17, 49,
50), that caused the ceftriaxone-resistant phenotype in an ongoing typhoid outbreak in
Pakistan (12). Other ESBL genes, including blacyy., and bldcry.m.14 have also been
reported in relation with ceftriaxone resistance in other Salmonella species (51, 52) but
never in S. Typhi. The sequence identity of blacry.v.1s between our isolate and the
Pakistani isolates was 99%, with 92% coverage (Table 7). The resistance phenotype and
genotype were also different from those of our isolate (Table 7). The Pakistani outbreak
isolates formed a distinct cluster in the H58-specific MLT and showed high-level
clonality (Fig. 3 and Fig. S1). In contrast, our ceftriaxone-resistant isolate had genotype
3.3, which suggests a different source and geographical origin. Moreover, no other
ceftriaxone-resistant strains of genotype 3.3 have been reported from Bangladesh. We
hypothesize that acquisition of the blacry.m15 gene might compromise the fitness of S.
Typhi although as of now no data have been published in support of this. Also, no
association with fitness has been found for ciprofloxacin resistance mutations in DNA
gyrase genes (53). Therefore, the possibility of a global dissemination of these recently
emerging variants cannot be excluded given the successful multicontinent spreading
of its H58 ancestor (genotype 4.3.1).

This study had some limitations. The isolates from Pakistan are from a still-ongoing
outbreak in Hyderabad and Karachi that started in 2016. The Nepal isolates are from a
prospective surveillance in the area of Kathmandu valley and cover a period of 9 years
(2008 to 2016). The collection of strains from Bangladesh was selected from a biobank
of >3,000 strains recovered over a period of 15 years (1999 to 2013) from two different
hospital settings in Dhaka. The majority (97%) of the isolates from Bangladesh are from
children (<18 years old). Therefore, none of the collections cover the whole population
in their respective countries. Also, there is no overlap of the isolate collection periods
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between Bangladesh and Pakistan. Country-to-country comparisons of the observed
data may therefore be biased.

Conclusion. Our study demonstrated that WGS has high sensitivity and specificity
for prediction of S. Typhi resistance phenotypes. However, this genomic method still
lacks sensitivity and needs fine-tuning for the detection of ciprofloxacin resistance. We
detected three different mutations associated with specific genotypes that could be
used to develop genotype-specific tracking tools. We report a new, local variant of
genotype 4.3.1, lineage Bd, which contains a recently emerged sublineage, Bdq, that
exhibits a high level of ciprofloxacin resistance. A triple mutant variant (gyrAsgse
gyrApssc ParCegay) of lineage la with high ciprofloxacin resistance was also detected. A
similar triple mutant variant of lineage Il (gyrAsgsr 9yrApssc ParCegac) has been reported
from Nepal and possesses the same phenotype (28, 29). Our ceftriaxone-resistant
isolate contains the blacry_\.1s gene but has a genotype and gene sequence different
from those of the same gene of XDR S. Typhi strains from the Pakistan outbreak,
defining a different ancestral origin. Thus, dissemination of this isolate throughout the
region from a single point is therefore less likely. However, multiple independent
genetic events in neighboring countries and possible subsequent dissemination en-
hance the risk of the global spread of these highly resistant clones.

The data presented in this study will add to the accumulating information, from
Pakistan and Nepal in particular, concerning the increasing drug resistance of S. Typhi.
The emergence of XDR S. Typhi is strongly compromising effective treatment of typhoid
fever. The spread of these resistant lineages and their occurrence in various Asian
countries emphasize the need to inform public health professionals and sensitize the
global community. Measures to implement a two-pronged approach for typhoid
control need to be accelerated (54, 55). Both short-term vaccine interventions for
high-risk populations and long-term water and sanitation interventions will undoubt-
edly be the cornerstones of a global prevention plan to address control of typhoid
fever.

MATERIALS AND METHODS

Isolate collection and antimicrobial susceptibility profiles. All S. Typhi isolates used in this study
were collected from the Child Health Research Foundation (CHRF) at the Department of Microbiology,
Dhaka Shishu (Children) Hospital, in Dhaka, Bangladesh. The CHRF team has been preserving invasive
Salmonella isolates since 1999 and maintained a biobank of >3,500 S. Typhi isolates, largely from
children (<18 years of age). All strains were isolated from the blood of patients diagnosed with typhoid
fever in two different settings: hospital inpatients (hospitalized), and out-patients attending the consul-
tation facility (56). Clinical and epidemiological data were collected for all isolates collected from hospital
inpatients.

We selected 539 S. Typhi isolates for this study; data were available for those isolates with respect to
the date of isolation (1999 to 2013), hospital setting, and phenotypic resistance for five different
antibiotics (ampicillin, chloramphenicol, co-trimoxazole, ciprofloxacin, and ceftriaxone). Age data were
available for 85% (456/536) cases; among those cases, 97% (443/456) patients were <18 years of age,
while 76% (345/456) were <5 years of age. We checked the identity of the isolates by the use of standard
biochemical tests and Salmonella agglutinating antisera (Thermo Scientific, MA, USA). Antimicrobial
susceptibility for ampicillin (amp), co-trimoxazole (sxt), and chloramphenicol (chl) was determined using
the disk diffusion method (Oxoid, Thermo Scientific, MA, USA). Broth microdilution was used to
determine the MIC values for ciprofloxacin (cip) and ceftriaxone (cro; Sigma-Aldrich, MO, USA). All zone
diameter and MIC data were interpreted according to EUCAST v8.0 clinical breakpoints (57). Fig. S7 in the
supplemental material shows the complete workflow. All sequence data have been submitted to the
European Nucleotide Archive (ENA). Data Set S1 in the supplemental material summarizes relevant
details of our isolates.

DNA extraction and whole-genome sequencing. Isolates were grown on MacConkey agar (Oxoid)
overnight, and the colonies were suspended in water. The QlAamp DNA minikit (Qiagen, Hilden,
Germany) was used to extract DNA from the suspension on the same day. WGS was performed using an
lllumina HiSeq 4000 platform (The Oxford Genomics Centre at the Wellcome Trust Centre for Human
Genetics, Oxford, United Kingdom). One Salmonella Paratyphi isolate was also sequenced so that it could
be included in comparative phylogenetic analysis (as an outgroup).

Data quality check. Sequence data quality was checked using FastQC v0.11.15 (58). We summarized
all quality indicators using MultiQC v3 (59). If the summary revealed the presence of adapter sequences,
they were removed using Trimmomatic v0.36 (60). KmerFinder was used to confirm the species of the
strains (61, 62). Another tool, SeqSero, was used for WGS-based serotyping, to determine the Salmonella
serovar of the isolates and confirm the wet-lab serotyping results (63).
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WGS data analyses with BioNumerics. Adaptor-free fastq files were imported into BioNumerics
version 7.6.2 (Applied Maths NV, Sint-Martens-Latem, Belgium) and analyzed via the use of the integrated
Calculation Engine. For the comparison with isolates from neighboring countries, we used recently
published WGS data on 100 S. Typhi isolates from Pakistan (12) and 198 S. Typhi isolates from Nepal
(29). The Pakistan isolates were mostly from an ongoing outbreak of XDR S. Typhi, in Hyderabad and
Karachi, Sindh, Pakistan, between November 2016 and March 2017 (12). In contrast, the Nepal
isolates were part of a hospital-based enteric fever surveillance performed during 2008 to 2016,
based on one of the large referral hospitals in Kathmandu Valley, namely, Patan Academy of Health
Sciences (PAHS). (29).

Details of the quality control of the WGS data, mapping against the reference genome, filtering the
SNPs, allele calling for cgMLST, detecting the presence of acquired resistance genes, and SNP-based
genotyping are described in Text S1.

Classical 7-locus MLST. The complete sequences of seven loci (aroC, dnaN, hemD, hisD, purE, sucA,
and thrA) were identified in extracted contigs. All sequences were matched with Enterobase (Achtman
7-gene MLST) (http://enterobase.warwick.ac.uk/species/index/senterica) to determine the classical MLST
type of each isolate.

Phylogenetic analyses. We used RaxML v8.2.10 to build maximum likelihood phylogenetic trees
(MLT) (65) on the basis of the alignment of 2,328 SNPs from 536 S. Typhi isolates in our study, 3,251 SNPs
from 834 isolates in the comparisons with neighboring countries, and 627 SNPs from all 603 H58 isolates.
Lineages for all H58 isolates were determined as previously described (38). We employed the generalized
time-reversible model and a Gamma distribution to model site-specific rate variation (the GTRGAMMA in
RaxML). Support for the MLT phylogeny was assessed via 100 bootstrap pseudoanalyses. The S. Paratyphi
A strain from Bangladesh (Sample: 311189_229186) was included as an outgroup for tree rooting. All MLT
and UPGMA trees were displayed and annotated using the iTOL6 online version (66). To compute the
genetic distances between different groups (e.g., countries, H58 lineages, etc.), a pairwise SNP distance
matrix was generated between isolates by computing the number of SNP loci at which pairs of isolates
had discordant alleles. Median distances within or between groups were computed from this distance
matrix.

Statistical analyses were performed using R v3.5 (64); the same application was used to generate the
line graphs and box plots.

Data availability. All sequence data determined in work have been submitted to the European
Nucleotide Archive (ENA) (study identifier [ID]: ERP109468).
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